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Proof is given of the existence of a classical solution to the nonlinear Boltzmann 
equation in all R 3. The solution, which is global in time, exists if the initial data 
go to zero fast enough at infinity and the mean free path is sufficiently large. The 
solution is smooth in the space variable if the initial value is smooth. The 
asymptotic behavior of solutions is also given. It is shown that as t ~ ~ the 
solution to the Boltzrnann equation can be approximated by the solution to the 
free motion problem. 

KEY W O R D S :  Boltzmann equation; initial value problem; kinetic theory; 
asymptotic behavior of solutions. 

1. I N T R O D U C T I O N  

In this paper we prove the existence and asymptotic behavior of a classical 
solution to the nonlinear Boltzmann equation in all R 3. In Section 2 we 
discuss existence proofs for weak solutions to the Boltzmann equation. In 
Section 3 we prove new results on the existence of a classical solution. The 
solution, which is global in time, exists if the initial data go to zero fast 
enough at infinity and the mean free path is sufficiently large. The last con- 
dition is realized through the smallness of the L t norm of a certain function 
h that appears in the upper bound on the initial value (see Theorems 2.1 
and 2.2). The solution obtained is smooth in the space variable if the initial 
value is smooth. 

In Section 4 we give the asymptotic behavior of the solution. We show 
that as t ~ oo the solution to the Boltzmann equation can be approximated 
(in a certain norm) by the solution to the free motion problem. This 
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amounts, in fact, to the existence of a corresponding wave operator 
associated with the Boltzmann operator. Finally, by giving an explicit 
bound on the collision operator as t ~ o% we show that collisions become 
less important as compared to the translational motion of molecules of the 
gas. This behavior is due to escape of the gas as t --. o0 from any bounded 
set of R 3. 

Existence of a weak solution of the Boltzmann equation, Theorem 2.2, 
is a result essentially presented by Bellomo and Toscani in a series of 
papers, (4 8) utilizing the "beginning condition" of an approximation scheme 
of Kaniel and Shinbrot. (2) However, the Kaniel-Shinbrot method provides 
monotonicity, and thus the pointwise convergence of a sequence of 
approximate solutions, but does not provide a priori information about a 
sense of convergence within the given Banach space (except in special 
spaces, e.g. L p with 1 ~ p <  oe). The settings in the above-mentioned 
articles, and in Ref. 3 as well, all involve Banach spaces of continuous 
bounded functions, and thus applications of the Kaniel-Shinbrot method 
present certain technical difficulties. We indicate a route around these 
difficulties in Proposition 2.1. It may be noted that convergence of the 
approximate solutions is not a problem in Ref. 2, which is set in L 1. 

2. BASIC EXISTENCE T H E O R E M  

We consider the initial value problem for the Boltzmann equation 

OF 0F 
~?t ~-V-~x=J(F)' t > 0 ,  F(O,v,x)=fo(v,x)  (2.1) 

where F: [0, T] x R 3 x R 3 --. R is the one-particle distribution function and 
depends on the velocity v ~ R  3 and the position x e R  3 and whose time 
evolution is governed by (2.1). The collision operator J with a cutoff is 
given in terms of two operators 

J(F) = Q(F, F ) -  FR(F) 

where 

Q(F, F)(v) = fs2+ 

FR(F)(v) = fs~+ 

B(O, jw - v]) F(v') F(w') de) dw 
x R 3 

B(O, Iw - vl) F(v) F(w) do dw 
• R 3 

(2.2) 

where F(v) denotes F(t, v, x). 
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Due to the fact that the kinetic energy and the linear momentum are 
conserved during the collision, we have the following relations between v, 
W, /J, Wr: 

v '=v+~o(w-v ,  co), w ' = w - o ~ ( w - v ,  oJ) (2.3) 

where ( . , . )  is the inner product in R 3, ~o e $2+ = {o3 ~ S 2 : ( w - v, ~o ) ~> 0 }, 
and $2= {me R3: tcol = 1 }. The relations in (2.3) are equivalent to 

v+w=v '+w' ,  v2+w2=v'2+w '2 (2.4) 

The angle 0~ [0, ~/2] is given by cos 0 =  ( w - v ,  co)/Iw-v I. The function 
B(O, Ivl) is defined on [0, ~/2] x R+/{0} and is continuous. Throughout 
this paper we will assume the following bound on B(O, Iv1): 

B(O,]v]) l + ] v l  0 ~ < b < l  (2.5) 
c o s 0  ~<c ivt~ , 

where c > 0 .  For inverse power potentials, g ( r ) = r  -s, B(O, lv[)= 
b(O) ]vl ~s-4)/s. The function b(O) is nonnegative and has a singularity at ~/2 
of the type (cos0) -~, where )~=(s+2)/s. Assuming the usual angular 
cutoff hypothesis, ~1) the inequality (2.5) is satisfied for all inverse power 
potentials with s > 2 .  The rigid-spheres model [B(O, Iv l )=  Ivlcos0] 
corresponds to 6 = 0. 

Often, due to the mathematical difficulties in dealing with problems of 
the type (2.1), one considers instead, after integration along characteristics, 
the weaker form 

f2 F(t) = U(t) fo + U(t -- s) J(F(s)) ds (2.6) 

where (U(t )h)(v ,x)=h(v ,x- tv)  for tER and (v ,x)6R3• 3 is the 
solution to the equation 

dg 
~ +  v ~ = O, g(O, v, x) = h(v, x) 

A solution to (2.6), considered in a function space in which U(t) acts as an 
operator and the integral makes sense, is usually called a mild solution to 
(2.1). The precise definition of a mild solution will be given in Section 3. 

A different form of (2.6) can be obtained by acting with U(- t )  on 
both sides of Eq. (2.6) and introducing f ( t )= U( - t )  F(t). We obtain 

f( t)  = f o  + f~ U(-s)  J(U(s) f(s)) ds (2.7) 
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Let us note that J(U(s)f(s))-r U(s)J(f(s)) for s r  In fact this property 
is crucial in proving existence theorems to (2.7). Except for a different 
notation and formulation that will be important to us later, (2.7) was first 
considered by Kaniel and Shinbrot ~2) and later by Illner and Shinbrot, ~3) 
Bellomo and Toscani, ~4) and Toscani. (5) 

In Section 3 we show how starting from a solution to (2.7), one can 
obtain a solution (in our case it even will be a classical solution) to the 
Boltzmann equation (2.1) considered in a certain Banach space. 

We start the process of solving (2.7) with a few definitions. Cb(Z) for 
Z c R n and n ~> 1 denotes the space of all real, bounded, and continuous 
functions defined on Z. For  given positive functions h, m ~ Cb(R+) let 

m(h, m)= { f  ~ Cb(R+ • 3 • R3): If(t, v, x)l ~<ch(Ixl) m([vl) 

for some c > 0 } (2.8) 

M(h, m) with norm given by 

II/11 = sup ([ f ( t ,v ,x) lh- l ( Ix[)m-l ( Iv[) )  (2.9) 
( t , v , x )~R+ xR3•  3 

becomes a Banach space. 
The next two lemmas, due to Bellomo and Toscani (4) (see also Ref. 6) 

are essential in proving existence theorems to (2.7). 

I . e m m a  2.1. Let h be a continuous, nonnegative, nonincreasing 
function on R+,  and such that h((1-1/21/2)s)~h*h(s) for some 
0 < h * <  ~ and all sER+. If u, v ~ R  3 are orthogonal, then for all x ~ R  3 
and t~R+ 

oh(Ix + sul) h(Ix + svl) ds 

fo <~2h*h(Ix[) h(smin{lul, Iv[})ds (2.10) 

Note that h(s)=( l+s2)  -p for p > 0  and some c > 0  satisfies the 
assumptions on h in the above lemma. 

Now we consider the integrals 

Jl(r,  ~ )=  sup ~ B(O, Iw--v[) 
v ~ R  3 J 3 2 •  

exp( - rw 2) 
Xlw_vls inOcosoda)  dw for r > 0  

and 
C B(O, [w - v[ )(1 + v2) ~/2 dm dw 

J2(9r 6) ~R3SUp J s2+•  ~/2 

for ~ > 0  
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We have: 

Lemma 2.2. If B(O, fvl) satisfies the inequality (2.5), then 

( 2 - 6 )  r(3-a)/2-dra (2.11) J,(r,g))<~c ~--6 -- ' 

for some 0 < c < oo independent of r and 6, and 

J2(~,6)~c~,6<oo for c~> 3 - 6  (2.12) 

Using the two last lemmas, one shows that the operator 

(Gof)(t, v, x)  = S ( - s )  J(g(s)f(s)) ds)(v, x) 

which appears in (2.7), leaves M(h, m) invariant. The integral above is the 
Lebesgue integral computed for each (v, x) ~ R 3 x R 3. Let us introduce two 
constants 

cl(m, 6)={d2, :  for m(lvl)-=exp(--rv 2) 
, for m(lv[)=(l+v 2) ~/2 

and 

fs l + J w - v i  c2(m, 6)= sup -(w---~-i-4-g cos O m(lwl ) do) dw 
v c R  3 2• 

We have: 

T h e o r o m  2.1. Let heLl(R+) be as in Lemma 2.1 and m(Iv])= 
ex p ( - rv  2) for r > 0  or m(lvl)=(l+v2) -~/2 for ~ > 3 - 6 .  Then, for any 
Lebesgue measurable f on R+ x R 3 x R 3 such that f(t, v, x) <~ h(Ixr) m([v[) 
a.e. in (t, v, x), we have 

(a) (G~ U(s)f(s))ds)(v,x) 

~< 2h* IlhllL, c~(m, 6) h(lx[)m(tv[) 

and 

(b) (G~f)(t,v,x)=(f] f(s) U(-s) R(U(s) f(s))ds) (v,x) 

~< 2 Ilhllr, c2(m, 6) h([x]) m(lv]) 

for a.e. in (t, v,x)~R+ x R 3 x R  3. 
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If, in addit ion,  f is cont inuous,  then 

(Gof)(t ,  v, x ) =  (GQo f ) ( t ,  v, x) + (G( f ) ( t ,  v, x) 

is cont inuous  on R+  x R 3 x  R 3. 

Proof. An appl icat ion of L e m m a  2.1 with u = v - v '  and v = v - w '  
together  with L e m m a  2.2 gives par t  (a). Pa r t  (b) follows easily after 
integrat ion with respect  to s and noticing that  

h(la+bsl)ds<~2 h( lb ls )ds  

for a, b r 0, t > 0, and nonincreasing h. 
Finally, let us consider (G( f ) ( t ,  v, x). For  x, y, u, v ~ R  3 and t>>.s>~O 

we have 

(G( f ) ( t ,  v, x) - G~f) (s ,  u, y) 

;sfs 2+xR3f(u , y, z) f (w,  y + r ( U  w), r) B(O, I w - v l )  do~ dw & 

{f(v,  x, z) f (w ,  x + z(v--w),  "c) B(O, I w - v l )  
+ 2+ • 1~ 

- f (u ,  y, z) f (w,  y + z(u--  w), z)B(0 ,  Iw- ul)} do~ dw d~ 

= I~ +12 

Since 

h ( l a §  h([bl ~)dr 

for a, b e R and t ~> s >~ 0, I~ is bounded  by 

f ~ f ~ t - S ) K h ( z ) d z ] m ( L w l ) l + l w - u '  
e .4~h( ly l )m( lu l )  lw-~t <Kl_'O Iw--u] l+~dw 

+ c.47zh(ly[)m(qu]) h(z) dz m(]w[) F~--_---~[1---4vdw 

= N1 + Nz 

N 2 c a n  be made  as small as we want  by increasing K, and N1 goes to zero 
when I t - s l - ~ 0 .  Note  that  0 ~ < 6 <  1, and heL~(R+) .  To est imate [2 let us 
take u. ~ v and y .  --+ x as n ~ oo. Then  

P.(z ,  w) = 27zf(u., y . ,  z) f (w ,  y .  + z(u. - w), z) B(O, Iw - u.[) sin 0 

, 2rcf(v, x, v) f (w,  x + z(v - w), z) B(O, Iw - v[) sin 0 = P(z, w) 
n ~ o o  
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a.e. in (~:, 0, w) e 1-0, T] x [0, ~/2] x R 3. Next, for each e > 0 there exists 
q > 0 such that if A c [0, T] x [0, ~/2] x R 3 is Lebesgue measurable with 
vol A < q, then 

L = f A  [Pn(z, w)l dzdOdw<e 

uniformly in n. Indeed, L can be made small for any A = [0, t] x 
[0, zr/2] x B with vol B small. Furthermore, for each e > 0 there exists R > 0 
such that 

f leo( , w)l at d0 aw <5 
Iwl~>R ~0 ~0 

These two conditions imply weak compactness of {Pn} in LI([0, t] x R3). 
The weak compactness together with the pointwise convergence imply that 
I2 goes to zero when [ x - y [  and [u -v l  approach zero. The continuity of 
(GQof)(t,v,x) can be shown basically in the same way, utilizing 
Lemma 2.1. 

Let us point out that the dominated convergence theorem could not 
be applied, since w --, m(lw[) B(O, [w- v[) is not necessarily integrable. 

Let B(r )=  {feM(h,m):  [[fl[ ~ r }  for r > 0 .  The existence theorem to 
(2.7) is contained in the next result, essentially due to Toscani (s) and 
Bellomo and Toscani. (6) 

Theorem 2.2. Let h and m be as in Theorem 2.1. If 

A= 8 rlhdlLm [h*cm(m, 6)+c2(m, 6)] < 1 

and fo ~ B(1 ), then 

(a) G: B(2) ~ B(2), where Gf=fo + Gof 
(b) Ilaf-aglr ~<21rf-gll  for f ,  g~B(2).  

In particular, by the contraction mapping theorem, there is a unique 
f e  B(2) such that G f = f  

We note that Theorem 2.2 holds also for h(s)=exp(-as2), a > 0 .  
Indeed, instead of Lemma 2.1, one has ~6) 

fo h(lx + us] ) h( Ix + vs[ ) ds <~ �89 1/2 h(]xt )/I u + v[ 

for u , v ~ R  3 with <u,v>=O and x 6 R  3, teR+.  
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Further, Theorem 2.2 is also true in 

X ( m , h ) = { f : f  is Lebesgue measurable on R + x R 3 x R  3 and 
If(t, v, x)[ ~< ch(lxl)m(lvl) for some c > 0 and a.e. in (t, v, x)} 

[see Theorem 2.1, parts (a) and (b)]. 
Next, one would like to show that if we start from fo e B(1) and fo >/0, 

then the solution to (2.7) will also stay nonnegative. This is done by using 
the method derived by Kaniel and Shinbrot. (2) 

Let 0 < T <  oo be arbitrary but fixed. Starting with two elements 

lo, uo6Mr(h,  m) = {fl [o, r3 • R3• R~: f e M ( h ,  m)} 

and such that 0 ~< lo(t, v, x) <~ Vo(t, v, x) for 0 ~< t ~< T, and (v, x) �9 R 3 • R 3, 
one defines recursively two sequences {/k} and {uk} as the solutions of the 
equations 

~lk+ 1 (t, V, X) Jr lk+ l(t, V, X) [ -U( -  t) R(U(t) uk(t))](v, x) 
Ot 

= [ U ( - t )  Q(U(t) lk(t), U(t) lk(t))](v, x) (2.13a) 

0Uk+l (t, v, x ) +  uk+ l(t, v, x ) [ U ( - t )  R(U(t)lk(t))](v, x) 

= [ U ( - t )  Q(U(t) uk(t ), U(t) uk(t))](v, x) (2.13b) 

lk+l(O)=Uk+l(O)=fo for k~>0 

For each (v, x) ~ R 3 x R 3 (2.13a) and (2.13b) are linear ordinary differential 
equations with unique solutions. The monotonicity properties of the 
operators R and Q imply that if 

lk l(t)~l~(t)<~uk(t)<~Uk-l(O 

for 0 ~< t ~< T, then 

l~(t) <<. lk + l(t) <~ Uk + 1(0 <~ uk(t) 

in the same interval. Furthermore, the same argument in Theorem 2.1 can 
be used to show that lk, u k ~ M r ( h , m  ) for k~>l. Thus, it follows that 
(2.13a), (2.]3b) have unique, nonnegative solutions in Mr(h ,m)  with 
{/k(t)} increasing and (Uk(t)} decreasing if 

0 = lo(t ) <<,/l(t) ~< ul(t) <~ Uo(t ) for 0 4 t ~< T (2.14) 
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(2.14) is called the beginning condition in Ref. 2. If one takes Uo(t, v, x) = 
2h(Ixl) m(lvl), then from (2.13b) with k = 0  and Theorem 2.1a we obtain 

Ul(t,v,x)<~Uo(t,v,x ) if 4h*llhllLlcl(m, 6)<~l 

Finally, (2.13a) with k = 0  gives ll(t,v,x)<<.Ul(t,v,x) for foEB(1)  and 
fo~>0. 

Proposition 2.1. Let f0EB(1)  be nonnegative and assume that 
4h* llhllc, cl(m, 6)~< 1. Then: 

(a) lk(t, v, ) k~oo v, ~-~oo x ~ l(t, x) and uk(t, v, x) -----* u(t, v, x) pointwise 

for all (t, v, x) E [-0, T] x R 3 x R 3. Furthermore, l and u are Lebesgue 
measurable on [0, T] x R 3 x R 3 and satisfy the inequality 

O~l(t,v,x)<<.u(t,v,x)<<.2h(IxL)m(IvJ) for all (t,v,x) 

(b) If ~b~ = lk, ~b~ = uk, ~b 1 = l, and ~b 2 = u, then 

[ f~ U(-s)  Q( U(s) ~b~,(s), U(s) ~b~,(s) ) as I (v, x) 

Efo ] i S ~ o~' u ( - s )  O(U(s) ~ ( ) ,  g(s) ~'(s)) ds (v, x) 

pointwise for all (t, v, x) and i =  1, 2. 

(c) L~ de__r [f~ ~b~+~(s)U(-s)R(U(s)qk~(s))ds]  (v, x) 

--* I f~ qki(s) U(-  s) R( U(s) ~(s) ) ds] (v, x) 

pointwise for all (t, v, x) and iCj,  i , j= 1, 2. 

Proof. Part (a) is clear. An application of the monotone convergence 
theorem gives part (b). To prove (c), let us note that for each t >t 0, 

Lk -- 2+ • i~3 

and 

(~ + l(s, v, x) (~(s, w, x + s(v - w) ) B( O, I w -  vl) do~ dw ds 

~ +  x(S, v, x)  ~ ( s ,  w, x + s(v - w))/~(0, Iw - vl) 

~h(Ixl)m(Ivl)h(Ix + slv-wl)m(Iw[) g(o, I w - v l )  

822/50/'3-4-10 
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where the right-hand side is integrable with respect to do dw ds for all 
(v, x) e R 3 x R 3. The dominated convergence theorem completes the proof. 

Finally, as in Theorem 2.2, one can show that u=lEX(h, m) for ,~ 
small enough. This means that a nonnegative solution to (2.7) obtained in 
Proposition 2.1 is identical with the unique solution to (2.7) obtained in 
the remarks after Theorem 2.2 (h is such that )o < 1) in the space X(m, h). 
However, if foeM(h,m), Theorem 2.2 gives the unique solution in 
M(h, m). Since M(h, m) c X(m, h), we are done. 

The method of Kaniel and Shinbrot does not provide any information 
about the continuity of u and l with respect to v or x. Indeed, pointwise 
convergence or even LP([0, T] x R 3 x  R 3) convergence of {uk} and {/k} for 
some p >~ 1 does not preserve the continuity in v and x of uk and lk in the 
passage to the limit of k ~ o0. Thus, it is not clear that the limit of the 
upper and lower sequences lies in the appropriate Banach spaces in the 
settings of Ref. 3 [just as asserted below Eq. (2.12) of Ref. 3] and of 
Refs. 4-8. 

We note that in these references, the authors considered the "trun- 
cated" Boltzmann operator, i.e., they defined 

(Gf)(t, v, x ) =  fo(v, x) + I I ~ U(-s) Q( U(s) f(s), U(s) f(s)) ds] (v, X )  

Theorem 2.2 applied to the truncated operator, together with Propo- 
sition 2.1, give the solution to (2.7) in X(rn, h), but not M(h, m). In order 
to obtain a solution to (2.7) in M(h,m), we have considered the full 
Boltzmann operator as defined in Theorem 2.2. 

We want to end this section with an easy generalization of 
Theorem 2.2 to the case of differentiable functions with respect to x. Let h 
be a function given in Theorem 2.1 and m(lvl)=(l+v2) -~/2 for some 

> 0. For  k/> 0 an integer, we define 

Mg(h, m) = { fe  Cb(R+ x R 3 • R3): (DPf)(t, v, x) E Cb(R+ x R 3 • R 3) and 

IDP f(t, v, x)t <~ cph(lxl)m(lv[) for some cp>O and Ipl ~<k} 

where, as usual, p = (Pl,  P2, P3), [P[ = Pl + P2 + P3 and 

D; =\OxlJ 

for x = (xl,  x2, x3). The norm in Mk(h, m) is given by 

Llfllk = sup [h(lx[) tm([vl) -1 IDPxf(t,v,x)[] 
(t, v , x ) E  R +  x R 3 x R 3 

I Pl <- k 

and Bk(r) denotes the ball of radius r in Mk(h, m). 
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We have: 

Theorem 2.3. For a given k~>0, e > 4 - 5 ,  and fo~Bk(1), let us 
consider the operator G defined in Theorem 2.2(a). If IlhllLl is small 
enough, then there is a 0 < 2k < 1 such that one has: 

(a) G: Bk(Z)---,B~(2). 

(b) HGf-Ggllk~2~llf-gllk f o r f  gcBk(2 ). 

Proof. It is enough to notice that Gf=fo + Go f, where Go is bilinear 
in f The rest of the proof follows the lines of the proof of Theorem 2.2 
[since :~>4-c5, the dominated convergence theorem can be used to 
differentiate (2.7) under the integral with respect to v]. 

As before, by using Proposition 2.1, one can show that if f0 E Bk(1) is 
nonnegative, then the solution f to (2.7) is also nonnegative. 

3. CLASSICAL S O L U T I O N S  

The Banach space M(h, m) used in Section 2 to obtain solutions to 
(2.7) is not suitable for problems concerning solutions to (2.6) or (2.1). 
Indeed, the group {U(t)} does not leave M(h, m) invariant. In addition, 
the collision term J(f) displays a singular behavior in M(h, m) (see Propo- 
sitions 4.1 and 4.2 and the remark after Proposition 4.2). For these reasons 
we need a new functional setting. 

We start with some notations. Let X be a Banach space. The norm in 
X is denoted by I[x. For ~/> 0, we define 

F~(R 3, X ) =  {f: f e C(R 3, X ) ,  

F~(R 3, X) w i t h  n o r m  

lim 
Ivl ~ oo 

(1 + /)2) ~/2 If(v)jx=O} 

]IflIF=(~,X) = sup (1 + v2) ~/2 ]f(v)lx 
v~ R 3 

becomes a Banach space. F~(R 3, R) will be denoted by F~(R3). For 
0 < T < o o ,  C([0, T],X) denotes the Banach of continuous X-valued 
functions on [0, T] with sup norm. We let C([0, T]) denote C([0, T], R). 
We have 

Lemma 3.1. Let X be a Banach space and c~>0. Then F ~ ( R  3, 

C([0, T], X)) is norm isomorphic to C([0, T], F~(R 3, X)). 
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ProoL Using well-known results on e-tensor products (see K6the, <9~ 
43.3(Y), p. 242, 44.7(2), p. 287; and Grothendieck, ~~ Corollary 4, p. 128), 
we have 

F ~ ( R  3, X )  ,,~ Fe(R 3 ) (~)e)( 

c([o, T], X) ~ C([0, T]) | X 

where ~ denotes norm isomorphism, @~ denotes the completed e-tensor 
product, and Y is a Banach space. From these facts, one easily obtains that 

F~(R 3, C([0, r] ,  X))~ F~(R 3) | C([0, 7"]) | 

~C([-0, r]) @efe(R 3) @eX 

C([0, r] ,  F~(R 3, X)) 

Note that Lemma 3.1 is not true if T =  oe and C([0, T]) is replaced 
by Cb[(0, ~ ) ] .  

For a nonnegative integer k, let C~(R 3) denote the Banach space of 
k-times continuously differentiable bounded functions o n  R 3 with bounded 
derivatives up to order k. Let X~, k denote 

F~(R 3, Cbk(R3)) = { f  s Cb(R 3 x R3): f is k-times continuously 
differentiable in x and such that (1 + v2) ~/2 ID~f(v, x)[ ~ 0 
uniformly in x e R  3 and for Ipl ~<k} 

with norm 

Ilfll=,k = sup (1 + v2) ~/2 [DPf(v, x)l 
(v,x)E R3 x R 3 

Let us recall that for t/> 0, U(t): X~,~--+ X~, k is defined by (U(t)f)(v, x )= 
f(v, x -  tv) for f ~  X~,k. 

I . e m m a  3.2. Let c~>~0 and k~>0 be given. We have: 

(a) X~+ 1,k+l is densely and continuously embedded in X~,k. 

(b) For each t eR,  U(t) is a bounded operator in X~,k with 
II g(t ) f l l  ~,k = Ilfll~,k' 

(C) For each f sX~ ,k ,  t ~  U( t ) f i s  continuous from R into X~,k. 

(d) U(-): RxX~,k--*X~, k is continuous. 
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ProoL Part (a) follows from the fact that C F ( R 3 x  R 3) is dense in 
X~,k for any ~ >~ 0 and k >/0. Part (b) is obvious and part (d) follows from 
(b) and (c). We shall show (c) when k = 0. For k >/1, the proof goes along 
the same lines. The group property at {U(t)} and part (b) show that to 
prove (c) it is enough to consider t ~ 0. We have, for some R > 0, 

II U(t) f - f i l  ~,k = sup (1 + 1)2) ~/2 If(v, x -- tv) - - f (v ,  x)l 
v ~  R 3 
x ~ R  3 

~< sup (1 + v2) ~/2 If(v, x - -  tv)-- f (v,  x)[ 
Iv[ >1 R 
Ix I >1 R 

+ sup (1 +/)2fx/2 If(v, x -  t v ) - f ( v ,  x)l 
Ivl ~< R 
Ixl ~< R 

= I 1 + I 2  

Since f e  X~,k, 11 can be made as small as we wish by increasing R. The 12 
converges to zero as t ~  oo because f is uniformly continuous on 
{(Ivl ~< R) •  (Ixj ~< R}, which completes the proof. 

Parts (b) and (c) of Lemma 3.2 imply that U(t) is a strongly con- 
tinuous group in X~,k. By the Hille-Yoshida theorem, its infinitesimal 
generator A has a dense domain D(A) in X~,k for each ~ >~ 0 and k/> 0. It is 
easy to check that D(A)= X~+ 1,k+1 and 

Of (v, x) (AS)(v, x) = - v  -~x 

for f = D(A). 
Our next result gives the continity property of J ( f )  in 

F~(R 3, C([0, T], C~(R3))), which will be denoted by Y~,k. 

Proposition 3.1. Let k>~0, ~ > 0 ,  T > 0 ,  and assume that the 
inequality (2.5) is satisfied with 0 ~< 6 < 1. Then 

(a) fR (g )~Y~ ,  k and IlfR(g)ll~,k<~cllfll~+~,kllgl]~+~,k for all 
f,  g e  Y~+n,x, where f l> 1 - 6 ,  ~ + f l > 4 - 6 ,  and a constant c > O  
is independent of f 

(b) {~(f, g )a  Y~,k and II{~(f, g)ll~,k<<.cllfll~+n,k Ilglt~+n.k for all 
f, g e  Y~+n,k where f l>  1 - 6 ,  ~ + f l > 3 ,  and the constant c > 0  is 
independent of f Here {~ denotes the symmetrized version of Q 
in (2.2). 

ProoL We will give the proof only for the case when k = 0. The case 
k ~> 1 can be proven in a similar way. First, by the dominated convergence 
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theorem, fR(g)( t ,  v, x) is continuous in (t, v, x) for f,  g e  Y~,o. For M > 0  
and lul, Ivl <~M, t, s e R + ,  and x e R  3, we have 

fR(g) ( t ,  v, x ) - f R ( g ) ( s ,  u, x) 

= [f( t ,  v, x ) - f ( s ,  u, x)] R(g)(t ,  v, x) 

+ f (s ,  u, x )[R(g)( t ,  v, x) - R(g)(s,  u, x)] 

= 11 + 12 

Since f, g e  Y~,o, I1 can be made as small as we want for I t - s l  and I v - u l  
small. Next, for R > 0 we have 

I2<~cllfll~+~,o Ilgll=+a,o (l+w2)("+fl+l)/2 tw - vl aq- [w ul ~ dw 
{Iwl/> R} 

+eJIfql~+Z,o~+• [ g(t, w, x) B(O, Iw--vl) 
- g( s, w, x) B( O, Iw- ul)] de) dw 

= N1 + N2 

Since a + f l > 4 - 6 ,  N1--*0 as R ~  oe. On the other hand, since 
6 <  1 <3  and g e  C([0, T] x {Iwl ~<M}, Cb(R3)), N2 can be made small for 
[ t - s l  and Iv -wl  small. So far we have proved that 

fR (g )  ~ C([O, 

~C({Ivl 

for any M > 0 .  Since (1 +v2) ~/2 
to zero as I vl ~ ~ ,  uniformly in 

T] • {lv])~<M}, Cb(R3)) 

~<M}, C([O, T], Cb(R3)) 

fR(g)( t ,  v, x) is continuous and converges 
(t, x) ~ [0, T] x R 3 for f ,  gE Y~+~,o, where 

a + fl > 4 - 6 and fl > 1 - 6, we conclude that f R ( g )  ~ Y~,o. The inequality 
in part (a) can be proven in a routine way. 

Next we show that if f ,  gE Y~+B,o, f i>  1 - 6  and a + f l > 3 ,  then 

sup (1 + v2) ~/2 Q(f, g)(t, v, x) < oo 
t , v , x  

(1 +v2) ~/2 Q(s g)(t, v, x) l%-(~--~ ~ 0 

uniformly in t and x. We have 

(1 + v2) =/2 (~(f, g)(t, v, x) 

~<cUfU~+~,o I]g[]~+~.o 

(1 + ~2)~j2 (1 + I w - ~ l ) d ~  dw f 
I(v) • 

J~2+x ,~, Iw -  ~l a ~1-$--~' 5 ( ~  ~-~ ~ + 7~5 ~ + ~)/~ 
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We use the estimation given in Ref. 6, p. 46: 

f s doJ 
2+ (1 + v'2) (~+~)/2 (1 + w'2) (~+a)/2 

(1 + v2) -~/2 (1 + w2) -1/2 
~< 

[ l + � 8 9  (~ + ~- 2)/2 

for 7 + / ~ > 2 .  
By introducing cylindrical coordinates with z axis in the w -  v direc- 

tion, we obtain 

I(v) <<. dz dp 
(1 +p )pa -~ (1  _]_ /)2)(cr (I -{ -p2+z2)  1/2 

(1 + pZ + zZ +v2)[( l  + v2)(1 + z2)+ p2] (~+~-2)/2 

Next, for 0 < e < 1, let 

= ~0, 6 > 0  
k(6) 

~, 6 = 0 

We have 

where 

pl-a(1 + v2) ~ 
(1 + p2 + z2 _{._ U2)[cc+k(6)]/2 ( l  + Z2) ~' 

q = l + k ( 6 ) - f l ,  7 = [ ~ + ~ - 2 - k ( 6 ) 3 / 2  

Finally 

fo ~ pl ~dp ( 1 + p2 + z 2 + v 2) [2 + ~(~)j/2 ~< 
c(6, ~) 

(1 "t- Z2 "{- V2) 2 

where 2 = max{& k(6)}, and since the integral with respect to z is finite for 
+ f l > 3 + k ( 6 )  and e > 0  was arbitrary, we obtain that I ( v ) < ~  for 

c~+/~> 3 and /~>  1 - ~  and I(v) l--fUS~ 0 for /~> 1 - 6 .  
By using similar arguments to those of part (a), one can show that 

Q(f, g ) e  Y~.o [i.e., the continuity property of Q(f, g)], which completes 
the proof. 

We now introduce the notions of strong and mild solutions to an 
abstract evolution equation of the form 

dF/dt + A F =  J(F), 0 < t <~ T 
(3.1) 

F(0) = fo 
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where F takes values F(t) in a Banach space Y, A is a linear operator in Y, 
and J(F) is a nonlinear term. 

Since in our case J does not map Y into Y, we will need an additional 
space X c  Y and such that J: X ~  Y. More precisely we will need the 
following conditions (11): 

(i) A generates a strongly continuous semigroup {U(t)}t~R+ in Y. 

(ii) There is a Banach space X continuously and densily embedded 
in Y such that U(t) X c  X for t ~> 0 and U(.) lx forms a strongly 
continuous semigroup in X. 

(iii) J: X ~  Y is continuous. 

We say that F is a strong solution to (3.1) in Y if F e  C([0, T], X), 
dF/dt6C([O, T], Y), F( t )eD(A)  for t>0, where D(A) is the domain of A 
in Y and (3.1) is satisfied for t e [0, T]. We say that F is a mild solution to 
(3.1) in Y if F e  C([0, T], X) and 

~.t 

F(t) = U(t) )Co + Jo U(t - s) J(F(s)) ds for 0 <~ t ~< T (3.2) 

where the integral on the right of (3.2) is the Riemann integral in Y. 
We have: 

T h e o r e m  3.1. Let k >~ 0, 0 ~< 6 < 1, and c~ > 4 -  6 be given. For  any 
given e > 0 ,  let m(lv l )=( l+v2)  -(~+~)/2 and h be the function given in 
Theorem 2.1. If X=X~,k, Y=X~ l,k, and f is a solution to (2.7) in 
M~(h, m) for foEMk(h, m), then: 

(a) U( . ) f r eC([O,T] ,X) ,  where fT is the restriction of f to 
[0, T] x R 3 x R 3. 

(b) F ( t ) =  U(t)fr(t)  is a mild solution to (3.1) in Y for O<~t~T. 

ProoL Since fT  ~ C([O, T], X), Lemma 3.2(d) implies that U( . ) f r  
C([0, T],X). By Lemma 3.1 we have F =  U(' ) fT( ' )~  Y~.k. In addition, 
IF(t, v, x)[ <<,cm(lvl), and thus by Proposition 3.1 we obtain J(F)E Y~ 1.k" 
Finally, using once more Lemmas 3.1 and 3.2(d), we conclude that for 
0 < t <~ T, s --* U(t - s) J(F(s)) is continuous from [0, T] into Y. This fact 
combined with Eq. (2.7) implies that F(t) satisfies (3.2) in Y. 

In order to obtain strong solutions to (3.1), we need one more 
condition: 

(iv) A restricted to X is a bounded operator from X to Y. 

Theorem 3.2. Let k>~l and let 6,~,e ,m,h be given as in 
Theorem 3.1. If X=X~.k, Y=X~ l,k 1, and f is a solution to (2.7) in 
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M,(h,m) for foeMk(h,m), then F(t)=U(t)fT(t) is a strong solution of 
(3.1) in YforO<~t<<.T. 

ProoL It is clear that  the condition (iv) for A is satisfied. The rest of 
the proof is standard; see, for example, Martin, ~12) Proposition 4.1, p. 297. 

Theorem 3.2 gives a classical solution to the Boltzmann 
equation (2.1). 

Finally, let us recall again the Boltzmann equation considered in 
M,(h, m): 

f (v ,x , t )=fo(v,x)+[foU(-s)J(U(s)f(s))ds](v,x)  (3.3) 

For ~ > 4 - 6  and fo~M,(h,m) one can show (see the proof of 
Theorem 3.1) that s~U(-s)J(U(s) f (s) )ds  is continuous in X~-l,k- 
Thus, the integral in (3.3) becomes the Riemann integral in X~ 1.~ and the 
Boltzmann equation (3.3) in X~ 1.~ can be also written in the form 

df/dt= U(-t)J(U(t)f(t)), t>~O (3.4) 

More generally, the integral in (3.3) is defined as a Lebesgue integral with 
respect to s, computed for each (v, x) ~ R 3 x R 3. The integrand, however, is 
not well behaved [e.g., it does not belong to Mk(h, m)] and equivalence of 
(3.3) and (3.4) fails. 

4. A S Y M P T O T I C  B E H A V I O R  OF S O L U T I O N S  

The asymptotic behavior of solutions to the Boltzmann equation (2.7) 
is based on the following two propositions: 

Proposition 4.1. Let k~>0, 0~<6<1,  and ~ > 4 - c 5  ( ~ > 3 - 6  for 
k = 0 )  be given. Take m~([v])=(l+v2) -~/2 and l < p ,  q < o o  such that 
lip + 1/q = 1, 1 < q < 3, and 3 - p(~ - 1 ) < p6 < 3. Assume h is a function 
given in Theorem 2.1 such that J'R tZhq([tl) dt< oo. 

Then, for any f~  Mk(h, m~), we have 

][D~ f(s) R(U(s) f(s))](v, x)] 

<~c(~, p, q)h(]x])m=_l(]v])s 3/u (4.1) 

for each ]iJ ~<k, s > 0 ,  and (v,x)ER3• 3. 
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ProoL It is enough to consider k = 0 .  Then the left-hand side of (4.1) 
is bounded by 

[fR 71/q ch(Ix[)m~-l(Ivl) 3hq(Ix +(w-v)  sl)dwJ 

xlfR mP(Iwl) (l iw_vlp ~ dwl '/p 

A simple integration completes the proof. 
We remark that when h = c(1 + x2) (-1 ~)/2 for some e > 0, then we can 

always find q and p that satisfy the conditions of Proposition 4.1. Indeed, 
take 3 / ( 1 + e ) < q < 3  and p=q/(q- 1). 

P r o p o s i t i o n  4.2. Let k>~0, 0~<6<1 ,  and a > 4 - 6  ( c ~ > 3 - 6  for 
k = 0 )  be given. Take m~(Ivl)=(l+v2) -~/2 and assume h is a function 
given in Theorem 2.1. Then for each 1 < fl ~< e there exists 1 < 7 < 13/6 such 
that for any f e M~(h, ms) 

I[DiU(-s) Q(U(s)f(s), U(s)f(s))](v, x)l <<,cm~_~(Ivl)s -~ (4.2) 

for each Iil ~<k, s > 0 ,  and (v,x)eR3xR 3. 
The proof of Proposition 4.2 is rather lengthy and technical, and is left 

to the Appendix. 
By sacrificing the exponent 7 in (4.2) one can show that the left-hand 

side of (4.2) is bounded by ch(lxl)m~ ~(Iv])(1/s) for any f~Mk(h,m~), 
where fl is any number in the interval ( 3 -  6, c~). Since we are not going to 
use this fact, we omit its proof. 

Using Propositions 4.1 and 4.2, one obtains immediately: 

T h e o r o m  4.1. Let us assume the conditions of Proposition 4.1. 
For  any given e > 0 ,  let feMk(h, m~+~) be a solution to (2.7). Then, for 
every 1 < fl ~< c~ there exists f ~  ~ X~_~.k such that f(t) ~ f~ in X~_~.k. 

The rate of convergence is as t ~, where 0 < 2 = min{3/q, 7 } - 1 and 7 is 
given in Proposition 4.2. 

Asymptotic behavior of a strong solution is given in our next result. 

T h e o r e m  4.2. Let the assumptions of Proposition 4.1 be satisfied. 
In addition, assume that k ~> 1, e > 4 - 6, and e > 0. For  fo~ M~(h, ms + ~) 
let F(t)eX~,k be a strong solution to (3.1) in X~ ~.k-~. Then, for every 
1 < fl ~< e there exists f~o e X~_~.k such that 

I I r ( t ) -  g(t) f~ll=_,.k ,~oo' 0 

The rate of convergence is the same as in Theorem 4.1. 
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The proof of Theorem 4.2 follows from Theorems 3.2 and 4.1. 
Theorem 4.2 implies that as t ~ oo the solution,to the Boltzmann equation 
can be approximated by the solution U(t)fo~ to the free motion problem. 
This suggests that collisions become less important as compared to the 
translational motion of molecules of the gas. The next corollary confirms 
this. 

Corollary 4.1. Suppose that the assumptions of Theorem 4.2 are 
satisfied. If F(t)eX~,k is a strong solution to (3.1) in X~ ~,~ l, then for 
each l < f i ~ < e a n d t > 0 o n e h a s  

HJ(r(t))ll= ~,k <~ c/t" 

where 1 < q  =min{3/q,  7}, and q and 7 are given in Propositions 4.1 and 
4.2, respectively. 

Finally, we also have asymptotic behavior in L p. 

T h e o r e m  4.3. Let the assumptions of Theorem 4.2 be satisfied. If 
p~> 1, ~ denotes any bounded subset of R 3 and F(t)~X~,k is a strong 
solution to (3.1) in X~_1,~_1, then IIF(t)N~(R3• ,~oo' 0. 

ProoL We have F(t,v,x)<~2h(lx-tv[)m(lv[) for t~>0 and (v ,x)e  
R 3 x R 3. Since heLl (R+)  is nonincreasing, we obtain F(t, v, x) , ~ ,  0 a.e. 

in R 3 • R 3. Now, ~ > 4 -  6, 0 ~< 6 < 1, and boundedness of f2 imply that 
F(t)~LP(R 3 x f2). By the dominated convergence theorem, F(t)--+0 in 
LP(R 3 x/2)  as t --. oo. 

Theorem 4.3 shows that the gas "escapes" as t --, oo from any bounded 
domain in R 3. Boundedness of f2 is important. Indeed, conservation of 
mass gives us the equality 

;R3• 3 F(t 'v 'x)  dvdx=;R3• fo(v,x) dvdx>O 

which holds for each t > 0. 
Recently, Hamdache (~31 obtained the asymptotic behavior and the 

decay of solutions to (2.7) in LP~(R 3, ~ 3 L x (R , exp(flx 2) dx)), where 

LP, r (R  3 ) p 3 = L~(R , (1 + v2) ~ exp(ev 2) dr) 

fl > 0, r ~> 0, c~ ~> 0, and 1 ~< p < oo. It follows from the analysis given in 
Ref. 13 that for ~ > 0  one can take p =  0% and thus we have a result 
analogous to Theorem 4.1 in an L ~ setting with h ( l x [ ) = e x p ( - f l x  2) and 
m(Ivl)=exp(-av2). We note in addition that in Ref. 6, Theorem 3.3, 
Bellomo and Toscani proved a special case of Theorem 4.1 with h(lxl)= 
(1 +x2) -p/2 and m([vl)=exp(-rv2), where p >  1 and r > 0 .  



630 Polewczak 

APPENDIX.  PROOF OF PROPOSIT ION 4.2 

We prove the proposition for k = 0. The case k >t 1 can be shown in 
the same way. First write 

(U( - s )  Q(U(s) f(s), U(s) f(s)))(v, x) 

~ c f s  h ( I x + ( v - v ' ) s l ) h ( I x + ( v - w ' ) s l  :+ • 

• m=(Iv'l) m=(Iw'l) B(O, I w -  vl) dco dw = I 

To est imate/ ,  we transform the integral as in Ref. 1, p. 35: 

x m ( I v + z [ ) m ( l v + u l )  lul-:R(lul ,  Iz[) 

Let us recall that z is integrated first over the plane perpendicular to u, and 
then u is integrated over the full three-dimensional space. Note 
R(lul, Izl)=constxB(O, [w-vl)/sinO. As in Ref. 1, p. 38, by using (2.5), 
we obtain 

R(Lu[, [z[) ~< const x [u[ [-Z 2 + U2) -6/2 -{- (Z 2 "~ /,/2)(-1 -6 ) /2]  

Thus, 

I <~ c f R3 du ~•  dz h ( l x -  zsl ) h ( l x -  usl ) m~(lv + z[ ) m~(lv + ul ) lul - a 

• [ ( z : + u : ) - ~ / 2 + ( z : + u : ) ~ - i  ~/23 

Let l < p l , p 2 ,  q l , q 2 < o o  be such that p { l + q ; - Z = l  and 
p ~ - 1 + q 2 1 = l .  Writing x=x~+xu ,  V=Vz+Vu, where x~,vz2,z  and 
xu, v, 2_ u, we obtain 

1 "~ (U -t- Z) 2 =  1 "JC(I)z'Ji-Z)2"~l)2 u 

1 + (v+  u ) 2 -  - 1 + (v~+u)2+v~ 

and 

2 ( x -  zs) 2= (x z -  zs)2 + x u 

( x -  us): = ( x . -  us): + x~ 
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For 1 </3-~<~ we have l<~cm~ ~(b t )Z iZ2 ,  where 

Zl~--- sup hq~([Xz-ZSl)dz 
x,v,u~ R 3 • 

and 

Z 2 =  sup hq2(lxu-usl)du 
v ,x  E R 3 3 

The second integrals from the left in Z1 and Z 2 a r e  bounded by a constant 
independent of v ~ R 3 if 2//3 < Pl < 2 and 3 - P2/3 < p2(1 + 6) < 3, respec- 
tively. 

Next, for s > 0 

l/ql 
[ f z •  [ z thq l ( [ z[ )d[z l ]  

and 

~- ~ ~ 1/q2 
IfR3hq2(lXu-USl)dull/q2=(47z)l/q2s-3/q2~f ~ [utehq2(lul)d[u]] 

Since h e LI(R) is nonincreasing, then h(lx])~< const x Ix[-i  for large Ixt. 
This, together with the boundedness of h, implies that the integrals on the 
right-hand side of the above two equalities are finite if ql > 2 and q2 > 3. 
However, p ~ < 2  implies that q1>2,  and if we set q2=ql+ 1, we also 
obtain q2 > 3. 

Summarizing, we have obtained 

I~< const(pl,/3, 6) m=_~(lv[) s -7 

where y=2/q 1 +3/(ql  + 1). This estimation holds for 2//3<pl < 2  and 
3 - p z / ~ < p 2 ( 1  + 6 ) < 3 ,  where p 2 = ( 2 p l - 1 ) / p l .  It is easy to check that 
7 > 1  if (5+7m)/6<p~<2. For each such Pl, 1.21<(2p~-l)/pl= 
p2<3/2,  and since 0 < 6 <  1, we also have p2(1 + 6 ) < 3 .  Finally, for each 
/3 > 1 we can find (5 + 71/2)/6 < Pl < 2 such that p2(1 + 6 +/3) > 3. This 
completes the proof. 
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